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ABSTRACT

The evaluation of the cv- measurements on the critical isochore of SF6 performed

with the newly developed scanning-radiation-calorimeter during the German Spacelab

Mission D-2 is presented. During cooling in the 1-phase region under µg-conditions the

"piston effect" avoids significant temperature and density inhomogenities in the fluid. In

the 2-phase region both phases are continuously subcooled into the metastable region by

the "piston effect" causing a permanent nucleation of small droplets and bubbles, which

keeps the system near its thermodynamic equilibrium. For the slowest cooling run of

dT0 /dt = -0.06 K⋅h-1 at Tc, the cv-data are distorted by ramp rate effects only for

|(T-Tc )/Tc | < 3 10-6. Using a range shrinking procedure for the determination of the as-

ymptotic region the simple power law is valid for |(T-Tc)/Tc | < 1.6 10-4. For the fitting

procedure the theoretical constraints α = α’ and B = B’ are applied. Fitting the data in

the asymptotic region to the simple power law yields the exponent α = −
+0 1105 0 027
0 025, .
.  and

the amplitude ratio A A− +
−
+= 1 919 0 27
0 24, .
. , in good agreement with values of the renor-

malization group theory (RGT) and other experiments for the 3,1-universality class. The

validity of the power law extended by the first Wegner correction is found to be |(T-

Tc)/Tc| < 1 10-3, giving similar values for the fitting parameters. Testing the two-scale-

factor universality by combining the critical amplitude with the correlation length gives

Rx = 0.284 ±0.018, in agreement with theoretical estimates and other experimental values

for fluid systems.

KEY WORDS: critical phenomena; isochoric heat capacity; microgravity; sulfur hexa-

fluoride.



1 INTRODUCTION

During the D2-Mission a scanning-radiation-calorimeter was employed to measure cv of

SF6 on the critical isochore during heating and cooling runs. This instrument has espe-

cially been developed to meet the experimental requirements under microgravity (µg-)

conditions. The cooling runs allowed undistorted cv-measurements in the immediate vi-

cinity of the critical point, where earth-bound experiments are influenced by the implicit

effect of gravity.

The technique of using cooling runs for the cv-measurement near the critical point re-

sulted from the analysis of the experiments performed during the D1-mission. In these

experiments, the effect of isentropic heating ("piston effect") caused significant tempera-

ture differences in the fluid due to the different isentropic temperature coefficients

(δT/δp)s of both phases. Under 1g-conditions these inhomogenities are diminished mainly

by the effect of buoyancy convection, the limiting factor of optimized cv-measurements

(cell height H = 1 mm, heating rate dT0 /dt = 3.6 mK⋅h-1 ) is the implicit effect of gravity.

Under µg-conditions, however, the effect of isentropic heating becomes dominant and

leads to a decisive hysteresis of cv-courses obtained by the comparison of heating and

cooling runs.

Furthermore, during cooling the "piston effect" determines the fluid behavior, though

here the effect of isentropic heating keeps the fluid near its thermodynamic equilibrium.

Approaching the critical point the temperature and density inhomogenities caused by

heat conduction during cooling are reduced by the increasing influence of the piston ef-

fect due to the increasing thermal expansion coefficient (δρ/δT)p. During cooling into

the 2-phase region both phases are subcooled continuously into the metastable region by

the "piston effect". Here homogeneous nucleation occurs in both phases and bubbles in



the liquid phase and droplets in the gaseous phase are created constantly. This fine emul-

sion of bubbles and droplets provides a large surface and short paths for the heat and

mass transport during the phase transition. Therefore the fluid is kept near its thermody-

namic equilibrium resulting in an almost undistorted cv-measurement.

Due to the limited space available for this paper we refer to [1] and [2] for a more de-

tailed explanation of these phenomena and further information about the experiments

performed during the D2-Mission. In this paper we give only a short summary of the

main topics of the cv-measurement and present the results and discussion of the final

evaluation. For details on the construction and operation of the scanning-radiation-

calorimeter we refer to [3].

2 EXPERIMENTAL DETAILS

We used a spherical cell made of copper with a diameter of 19.2 mm, produced in an

electrolytic coating process. The cell is equipped with 4 thermistors, 1 on the wall and 3

at different radii inside the cell to measure the temperature distribution in the fluid.

The sample cell (stage 0) is heated and cooled passively through heat exchange with the

surrounding stage 1 mainly by radiation. About 10 % of the total heat exchange is carried

out by heat conduction via the electrical connections between the cell and stage 1. The

isochoric heat of the sample is determined by the energy balance of the cell leading to:
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The temperature difference T0-T1 is measured directly between a thermistor in stage 1

and the cell thermistors, the determination of the temperature course dT0 /dt of the cell is

based on the measurement of the temperature T1 and the difference T0-T1:
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With a wall thickness of 0.35 mm the total (mechanical and thermal) compressibility of

the cell is 6⋅10-5 K-1 . The spherical cell provides an excellent ratio of the total heat ca-

pacity and that of the fluid of 77% at T-Tc = -0.1 K and 66% at T-Tc = +0.1 K respec-

tively. The cell volume determined by several measurements is VC =  3,7626 cm3

±0.24%. The sample mass is mFluid = 2.773 g ±0.22%, yielding a sample density of ρ =

737.2 kg⋅m-3 ±0.27%. The sample purity was determined by the manufacturer to be

99.998%, mainly CH4, N2, H2O. The maximum leak rate of the cell measured by weigh-

ing the filled cell over several days was less than 0.024 %⋅year-1.

The thermal resistance Rth,01(T) was measured at several temperatures in a temperature

region of 12 K around Tc . The standard deviation of the fit of these data to a cubic

function was less than 0.02 %, the accuracy of Rth,01(T) is 0.47%. The heating power of

the thermistor PT (T) considered in Eq. (1) is less than 1% for all ramp rates.

The heat capacity of the cell CC was determined after emptying the cell to be

CC = 2.03 J⋅K-1 with a heating and a cooling run. The small temperature coefficient of

copper is neglected in the evaluation, the estimated accuracy of CC is 2%.

All thermistors were calibrated at 10 different temperature levels in the range of 15 K

spanning Tc with two Pt-25 sensors, integrated in stage 1. These sensors are calibrated

by the manufacturer Rosemount to 2 mK. To reduce the drift of the thermistors they

were aged artifi cially yielding a stability of dT/dt < 0.5 mK⋅year-1. The resistance-

temperature-curve of each thermistor was fitted with the Steinhart-Hart-Equation, the

mean standard deviation between data and fit is less than 0.5 mK for the measurement of

T0-T1 and 2.2 mK for T1 respectively.



With that the accuracy of the cv -data above Tc is calculated to be about 3-4.5% for the

ramp rates dT0 /dt = –0.4 and –0.06 K⋅h-1 respectively. Below Tc the accuracy is about

1.5-2.5% for dT0 /dt = –0.4 and –0.06 K⋅h-1 respectively. The precision of the cv-data

used for the analysis is about 1% in the complete temperature region except for |T-Tc | <

10 mK.

3 REGRESSION ANALYSIS AND DISCUSSION

To obtain the asymptotic behavior of the specific isochoric heat we used the simple

power law for data fitting:

(3) c A Bv = − +− +/ τ α

Here A–/A+ are the amplitude values below and above the critical temperature Tc, τ is the

reduced temperature (T-Tc/Tc), α the critical exponent and B the regular background

term. Our analysis follows the predictions of scaling theory that the critical exponent α

has the same value below and above Tc (α = α’). In accordance to the renormalization

theory we applied the constraint B = B’ and since the sample density proved to meet the

critical density of SF6 within 1% we applied the same critical temperature for the data

above and below (Tc
+ = Tc

–). Therefore we did not treat the data above and below Tc

separately but fitted both branches simultaneously.

Equations of the form as Eq. (3) are non-linear, non-analytic functions which have a

strong correlation between the parameters. This means there are a lot of parameter sets

describing the data almost equally well. This is elucidated by our analysis where a shift of

the critical temperature of only 0.1 mK yield a change of the exponent value of about 4%

without a significant change of the least square sum. To confirm the fitting procedure

finds the global minimum of the least square sum Χν independent of the fitting algorithm



Eq. (3) is treated as a linear function by the following procedure. A number of fits is

performed with fixed values of Tc and α for each fit. By the variation of both parameters

with a certain grid size and within reasonable limits the smallest value of Χν of all fits

indicates the best fit function for this data set.

3.1 Final Data File

The final data set includes data from several cooling runs performed under µg-conditions

cleared up by the data which are distorted obviously by ramp rate effects. The results of

heating runs were not included since cv-data measured during heating runs are signifi-

cantly influenced by ramp rate effects in a wide temperature region around Tc.

Fig. 1 shows that the cv-data obtained by cooling under µg-conditions are distorted only

in the immediate vicinity of the critical point in spite of the comparatively high ramp

rates. It must be mentioned that the total mission time did not allow to realize smaller

ramp rates over a wide temperature range. A double-logarithmic representation (see [1])

reveals that a ramp rate effect in the cv-course of the slowest cooling run under µg-

conditions is obvious only in the temperature region of |(T-Tc)/Tc| < 3⋅10-6. The cv-data

of a run with the ramp rate dT0 /dt = –0.4 K⋅h-1 have a significant distortion only between

–1⋅10-5  < (T-Tc)/Tc < 2⋅10-5. The comparison with cv-measurements of pure fluids using

a scanning-ratio-calorimeter elucidates the advantage of the cooling technique under µg-

conditions. Even with heating rates of dT0 /dt = 3.6 mK⋅h-1 the cv-data are typically dis-

torted by ramp rate effects in a region of |(T-Tc)/Tc| < 3.5⋅10-5 ([4], [5], [6]).

The final data set includes more than 70.000 data points, mainly from the slowest runs, in

a temperature region of -3.5 K < T–Tc < 2.4 K. Due to the decreasing ramp rate of the

quasi-exponential runs both the data density and noise of data of the final data set in-

crease with decreased distance from Tc.



Fig. 1 Isochoric heat capacity cv measured under µg-conditions at different cooling rates.

For comparison a cv -course measured under 1g-conditions at a cooling rate of

dT0/dt = –0,1 K⋅h-1 is given.

3.2 Data file averaging

For data file averaging we made use of the fact that in a double-logarithmic representa-

tion of cv versus τ = (T-Tc)/Tc the cv-slope is approximately linear. Each decade of τ is

divided in j segments and for each segment the covered data are averaged to Nj data

points (cv,j , Τj). A reduced data set was created consisting of 2500 (cv , Τ)-pairs which is

available for further use by others (see Fig. 2). The different uncertainty of cv-data ob-

tained with different ramp rates was not considered resulting in a higher weighting of

data obtained with the slow runs compared to those of the faster runs (see below). In



order to obtain a reasonable CPU-time for the regression analysis the 2500 pairs were

reduced in the same manner to 40 data points per decade of τ.

The statistical uncertainty of the cv-data depends mainly on the ramp rate and the dis-

tance from Tc since the cell temperature is not actively controlled but depends on cv . In

addition the unregular dynamics of the phase transition in the 2-phase region changes the

noise of the data. Therefore it is not possible to assign a certain standard deviation to a

certain run or a certain ramp rate.

Instead an individual uncertainty or rather a weighting factor for each data point is de-

termined for the analysis concerning the asymptotic behavior of cv. In addition the in-

creasing temperature uncertainty of each data point approaching Tc is considered:

(4) σ σ
∂
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The individual uncertainties σcv,i
2 are obtained as the deviation between the cv-data and a

smoothing cubic spline applied to the cv-data in logarithmic form. With that a bias effect

on the individual uncertainties is avoided to the greatest possible extent since a smooth-

ing spline represents the data without a functional dependency.



Fig. 2 Final cv -data set consisting of 2500 (cv , T-Tc)-pairs covering the temperature

region –3.5 K < T-Tc < +2.4 K in a linear representation. This data set is available

for use and further evaluation by others.

In addition smoothing the cv-data in a logarithmic form provides the advantage that the

increased noise when approaching Tc can be smoothed out by a "harder" spline without

imposing a bias effect in that region where the cv-course has the maximum increase. Es-

pecially near Tc a wrong estimation of the individual weighting factors would influence

the result of the asymptotic analysis significantly. The spline parameter S, representing

the weight of each data point for the spline fitting, must be chosen in the appropriate

way. For higher values of S the smoothing spline change into an interpolating spline un-

derestimating the real standard deviation of the data. On the contrary, too small values of

S lead to a distorted representation of the cv-course and weighting factors respectively.



In Eq. (4) the temperature uncertainty σT-Tc is estimated to be 500 µK, the factor

(δcv,i/δT) is taken from the smoothing spline. The weighting factors are determined with

the data set consisting of 2500 points. For the again reduced data set used in the regres-

sion analysis the appropriate weighting factors where determined by averaging the indi-

vidual factors in the same way as mentioned above.

3.3 Determination of the asymptotic region

A range shrinking method was used to determine the extension of the asymptotic region

where the simple power law is valid for the description of cv-data. For this task the criti-

cal temperature Tc used in the fitting procedure is a fixed parameter, for the determina-

tion of the best fit function in the asymptotic region Tc is used as a free parameter. From

the cv-course measured with the slowest cooling run (dT0 /dt = –0.06 K⋅h-1) the critical

temperature of the sample was found to be Tc ≈ 318.680 K ± 0.5 mK.

The outer limit τmax was varied between 6⋅10-5 < τmax < 2⋅10-3, the inner limit τmin is fixed

for all fits to τmin = 3⋅10-6. The largest fitting region includes 203 data points, the smallest

region 81, 40 above and 41 below Tc. The range shrinking was realized by discarding a

data point from above and below Tc after each fit.

Fig. 3 shows Χv
2-courses obtained by this method using four different values for the

spline parameter S for the estimation of the weighting factors. It is obvious that Χν
2

reaches a nearly constant level between 1.05 and 1.2 for |τmax| < 1.6⋅10-4 independent of

the value of S or rather the weighting factors used for fitting the data to the simple

power law. A value of Χν
2 near unity stands for both a good estimation of the data un-

certainties and a good suitability of the simple power law for describing the data in this

temperature region.



Fig. 3 Semi-log plot of the reduced chi-square Χν
2 as a function of the reduced tempera-

ture τ obtained by varying the fitting region („range-shrinking“) and the standard

deviation of the data. The standard deviation of the final data set was determined

by fitting the data by a smoothing cubic spline. To find the best estimate for the

standard deviation of the data the spline parameter S was varied between 0.5

("smooth" , nearly interpolating spline) and 0.001 ("hard" spline). Independent of

the standard deviation used for fitting the data to the simple power law Χν
2

reaches a nearly constant value for |τ| < 1.6⋅10-4 indicating the extension of the as-

ymptotic region of the cv-data.

As shown in Fig. 4 the fit parameters α, A–/A+ and B increase in a similar way when the

outer limit τmax is decreased and reach nearly constant values for |τmax| < 1.6⋅10-4, too. For

these reasons the extension of the asymptotic region for our cv -data of SF6 is fixed to |τ|

= 1.6⋅10-4.



As shown in Fig. 3 for τmax > 1.6⋅10-4 Χν
2 increases for larger fitting regions depending

on the value of S. The more S is increased the more Χν
2 goes up. Increasing the parame-

ter S results in a decreased smoothing of the data resulting in an underestimation of the

actual standard deviation. On the contrary decreasing S gives a „harder“ spline which

tends to a systematic deviation between the spline and the cv-course and a decreasing

significance to find the asymptotic region. For these reasons the spline parameter S = 0.1

is chosen for the estimation of the individual uncertainties for the complete data set.

To find out any dependencies of the extension of the asymptotic region on the inner and

outer limit of the data set the limits were varied between 3⋅10-6 < |τmin| < 8⋅10-6 and 1⋅10-4

< |τmax| < 1.6⋅10-4 respectively. The values of α and the amplitude ratio show an insignifi-

cant range of only 1% when τmin is varied, the dependency on τmax is about 2-4 % verify-

ing an appropriate determination of the asymptotic region.

In comparison, cv-measurements of CO2 [4] yield an extension of the asymptotic region

of |τ| = 4.5⋅10-4, cp-measurements of a binary mixture [7] result in |τ| = 6⋅10-4. We assume

that this small difference is due to the different procedures estimating the standard devia-

tion of the data and the criterion applied to the determination of the asymptotic region.



Fig. 4 Semi-log plot of the parameters α, A–/A+ and B as a function of the reduced tem-

perature τ obtained by varying the fitting region ("range-shrinking"). The plotted

courses were obtained with S = 0.1, the results for other values of S are in princi-

ple the same. Independent of the standard deviation used for fitting the data to the

simple power law all parameters reach a nearly constant value for |τ| < 1.6⋅10-4 in-

dicating the extension of the asymptotic region of the cv-data.

3.4 Analysis in the asymptotic region

The data set between 3⋅10-6 < |τ| < 1.6⋅10-4 consists of 113 data points, Tc is now treated

as a free parameter between 318.678 K and 318.682 K with an interval of 0.05 mK. To

determine the best fit parameter α is varied as mentioned above between 0.06 and 0.15

with an interval of 0.0001. This analysis containing 7200 fits yields the critical tempera-

ture to Tc = 318.6801 K, 0.1 mK higher than the fixed value used above. The best fit

parameters for the asymptotic region are:

α = 0,1105 ±0,004



A+ = 69,43 ± 0,06 J/Mol⋅K

A– = 133,2 ± 0,07 J/Mol⋅K

B = 19,92 ± 0,20 J/Mol⋅K

A–/A+ = 1,919

with Χν
2 = 1.135 as the global minimum. The uncertainties given for the parameter repre-

sent the diagonal elements of the error matrix. They do not represent the absolute error

since they depend on the statistical uncertainty of the data used in the analysis. A more

realistic estimation of the uncertainties is given by the determination of the confidence

level of the estimated parameter (see i.e. [8]). We determined the range of parameters

which meet

(5)
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Χν
2 is the reduced square sum of a certain parameter set, Χν,0

2 is the global minimum

value of the best fit function. For the degree of freedom N – p = 109 (N number of data

points in the asymptotic region, p number of parameters of the simple power law) the 5%

F-distribution parameter is F0.05 = 2.46 and the 1% F-distribution parameter is F0.01 =

3.50.

Fig. 5 shows two projections of constant Χν
2 into the α-Tc-parameter space representing

the 95% and 99% confidence level of the best fit parameters above. The plot means a

95% (99%) probability that the real parameter values are within these contours. In the

plot the global minimum (Χν
2 = 1.135) with Tc as a free parameter is given and the local

minimum (Χν
2 = 1.197) with the critical temperature fixed to Tc = 318.680 K. This

analysis yields the following estimation for the uncertainties of the exponent α, the ampli-

tude ratio A–/A+ and the regular background term B:



α = −
+01105 0 027
0 025. .
.

A A− +
−
+= 1919 0 27
0 24. .
.

B = −
+19 92 265
22 3. .

.  J/Mol⋅K

The plot reveals the strong correlation between the critical exponent and the critical tem-

perature. The slight change from the fixed value of Tc to the value found in the analysis

with Tc as a free parameter of only 0.1 mK causes a change in α of 4 %!

Fig. 5 Contours of constant Χν
2 in the Tc-α parameter space representing the 95 % (F0.05)

and 99 % (F0.01) confidence level for the values of α and Tc determined in the as-

ymptotic region. The global minimum of the fit with Tc as a free parameter is

marked by X (Tc is found to be 318.6801 K), the local minimum obtained with Tc

fixed to 318.680 K is marked by O.

Fig. 6 shows the deviations of the reduced data set from the best fit parameters deter-

mined in the asymptotic region. The absence of any unbalanced deviations for both the



data below and above Tc verifies again the best fit function to be a good representation

of the experimental data in the asymptotic region. The increasing systematic deviations of

both courses from the best fit function beyond |τ| = 1.6⋅10-4 elucidate that the simple

power law must be extended by additional terms outside the asymptotic region.

Fig. 6 Deviations of the reduced data set from the best fit function in the asymptotic re-

gion measured in percentage units. Beyond the asymptotic region both the cv-data

for T<Tc (marked by x) and T>Tc (marked by  ) show a significant increase of

the deviation to the best fit function of the asymptotic region.

3.5 Analysis beyond the asymptotic region

To describe the data beyond the asymptotic region the simple power law is extended by

the 1. Wegner correction [9]:



(6) c A D Bv = − +



 +− + − +/ /τ α τ1 ∆

The temperature region where this model is a good representation of the data is deter-

mined with a range shrinking method as used for the asymptotic region. For this analysis

the exponent ∆ is set to the theoretical value 0.5 [10], the critical temperature is fixed to

Tc = 318.680 K, the other parameters of Eq. (6) are treated as free parameters. The inner

limit is fixed again at |τmin| =3⋅10-6, the outer limit is varied between 4⋅10-4 < |τmax| <1⋅10-2.

After each fit the data set fitted is reduced by discarding a data point from above and

below Tc. The analysis yields a monotonically decreasing Χν
2  until |τmax| = 1.0⋅10-3 , in

the temperature region |τmax| < 1.0⋅10-3 the reduced chi-square reaches a nearly constant

course at Χν
2 ≈ 1.2. This indicates both a good estimation of the standard deviation and a

good suitability of the extended model for describing the data in this temperature region.

To find the best fit function of Eq. (6) for |τmax| < 1.0⋅10-3 the amount of 175 points in

this temperature region is fitted by varying α from 0.08 to 0.13 (step 0.0001) and Tc

between 318.679 K and 318.681 K (step 0.1 mK), the exponent ∆ is fixed to 0.5. The

analysis yields Χν
2 = 1.189 and the critical temperature Tc = 318.6802 K, only 0.1 mK

higher than the value determined in the asymptotic region. The value of the critical expo-

nent shows only a small change compared to the best fit function in the asymptotic re-

gion to α = −
+01115 0 035
0 045. .
. . The parameter A–, A+ and B show a distinct shift of about

10%, the amplitude ratio yields to be A A− +
−
+= 2 01 0 40
0 32. .
. , clearly within the 95% confi-

dence level of the value in the asymptotic region. The estimated uncertainties given for

the exponent and the amplitude ratio represent the 95 % confidence level for the best fit

function. The increased degree of freedom when fitting the data to Eq. (6) results inevi-



tably in an increased uncertainty of the best fit function compared to the uncertainties of

the best fit function of Eq. (3).

Fig. 7 Deviations of the reduced data set from the best fit function using the first Wegner

correction. For |τ| >1⋅10-3 both the cv-data for T<Tc (marked by ) and T>Tc

(marked by +) show a significant increase of the deviation to the best fit function

of this region.

Fig. 7 shows the deviations of the complete data set from the best fit function in the tem-

perature region mentioned above. The plot verifies that the asymptotic power law ex-

tended by the first Wegner correction is a good representation of the data set for     |τmax|

< 1.0⋅10-3 . For larger temperature regions the plot clearly reveals increasing deviations

for both the cv-course above and below Tc .



To describe the data beyond |τ| > 1.0⋅10-3  Eq. (6) was extended by the second Wegner

correction:

(7) c A D E Bv = − + +



 +− + − + − +/ / /τ α τ τ1 2∆ ∆

The complete data set of 254 data points which covers a temperature region of about

|τ| = 2⋅10-2 was fitted to this function with the critical temperature fixed to

Tc = 318.6801K and the exponent ∆ fixed to the theoretical value 0.5. The other parame-

ters of Eq. (7) were treated as free parameters, the analysis was performed by varying the

critical exponent between 0.08 < α < 0.13 with a step of ∆α = 0.0001. The analysis

yields slightly changed parameter values but a relative high value of the reduced chi

square of Χν
2 = 2.14 indicates that Eq. (7) is an insufficient representation of the com-

plete data set. This is confirmed by Fig. 8 which represents the deviations between the

complete data set and the best fit function in the complete temperature region. The cv-

data in the 2-phase region below τ < –2⋅10-3  show a significant deviation from the best

fit function, in the contrary, the deviation of the 1-phase data do not increase 1% for the

complete temperature region.

In addition instead of Eq. (7) the following model used by [5] and [7] was applied to the

analysis of the complete data set:

(8) c A D E Bv = − +



 + +− + − + − +/ / /τ α τ τ1 2∆ ∆

The higher value of Χν
2 = 2.26 indicates that this is a worse representation of the com-

plete data set than Eq. (7).



Fig. 8 Deviations of the reduced data set from the best fit function using the second

Wegner correction. For τ > 2⋅10-3 the cv-data for T<Tc (marked by  ) show a

significant increase of the deviation to the best fit function of this region. In con-

trast the deviations of cv-data above Tc (marked by +) are below 1% indicating a

good representation by the model.

With this analysis it is not clear whether the reason for the observed deviations between

our cv-data and the model extended by the second Wegner correction lies in our cv-data

or in the model. The analysis of high-precision measurements of the isochoric heat of

CO2 by [4] yielded a good suitability of Eq. (7) in a temperature region of –5⋅10-2  < τ <

2,7⋅10-2 . Though a view on our cv-data of does not show any significant misbehavior in

this region. A bias effect due to the average procedure has to be excluded since the

analysis of the original data set shows the same deviation in this temperature region.



3.6 Two scale factor universality

To check the validity of hyperscaling the parameters of the best fit function valid for the

asymptotic region were combined with the correlation length for SF6. The universal fac-

tor was determined with

(9) R
A R

k
c

B

d
ξ ξ

α ρ
=

⋅ ⋅ ⋅









+
0

1

resulting in Rξ = 0.284 ±0.018 with ξ0 = 2.016⋅10-10 m [11], R=56.92 J⋅g-1K-1 , ρc as the

sample density, kB the Boltzmann constant and d =3. As shown in Table 1 this value is in

good agreement with experiments on other 3,1-systems and theoretical calculations.

3.7 Comparison with other experiments and theory

The statistical analysis in the asymptotic region yields the critical temperature of the

sample to be Tc = 318.6801 K, the estimated uncertainty with 95 % confidence level is

+0.4/–0.9 mK (see Fig. 5). The accuracy of the temperature measurement was calibrated

to be ±10 mK. This value matches the position of the cv-singularity measured with the

slowest cooling run within a few 1/10 mK. However, the value is about 50 mK below the

values of experiments using high quality samples. For a 5.4-SF6 (purity 99.9994 %) the

measurement of [12] yields Tc = 318.730 K and ρc = 742.1 kg⋅m-3, for a 5.5-SF6 the

measurements of [13] and [14] results in Tc = 318.736 K, ρc = 738.8 kg⋅m-3  and Tc =

318.723 K, ρc = 734.4 kg⋅m-3 respectively. The comparison of the measured Tc and the

quality of the sample fluid for several experiments in the literature shows that Tc de-

creases with decreasing quality since the impurities are mainly O2, N2, CH4. Since the

density of our sample matches the critical density of SF6 within 1% the difference in Tc is

caused only by impurities. According to the analysis mentioned above the critical tem-

perature of our sample indicates that the quality of our sample is better than 3.8. The



original quality measured by the fluid manufacturer was 4.8. We suspect that the addi-

tional impurities come from the fact that the cell could not be evacuated at high tempera-

tures before the filling due to the soft soldered thermistors in the cell.

Several investigations reveal that the behavior of the critical exponent α do not change

significantly even for impurities of a few percent of the sample volume ([6], [15]).

Therefore an influence of the small amount of impurities ( < 0.02 %) in our sample on

the universal parameters can be definitely excluded.

Table 1 gives a comparison of curve fitting in the asymptotic region between this work

and other experiments and the results of theoretical calculations. It is shown that the val-

ues of the critical exponent α and the universal amplitude ratio A/A+ determined in the

asymptotic region are in good agreement both with other experiments and theoretical

results for 3,1-systems. The extension of the asymptotic region determined in this work

is smaller compared to other experiments. At first glance the estimated uncertainties of α

and A/A+ of this work seem to be rather high compared to the results of the other ex-

periments, which give uncertainties of about 2 to 5 % for the critical parameters. This

difference is caused by the following reasons: First it has to be considered which method

is used to estimate the statistical uncertainties. The diagonal elements of the error matrix

normally yields smaller uncertainties than the determination by the confidence level. The

first method is i.e. used by [5], [7] and [16]. Secondly the estimated uncertainty depends

on the extension of the region fitted by the simple power law. The larger the fitting re-

gion the more data with a smaller standard deviation are included in the fit resulting in a

smaller uncertainty of the fit parameter. As mentioned above the uncertainties depend on

the strong correlation between the fitting parameters (see Fig. 5). Edwards [4] deter-

mines the critical temperature of the sample by independent time constant measurements



with an uncertainty of only ±0.15 mK! Therefore Edwards can reduce the estimated un-

certainty determined by the confidence level method of about 10% to the values shown

in Table 1.

A more precise determination of Tc in this work would have been possible only by much

smaller ramp rates reducing the rounding of the cv-singularity when passing the critical

point. However, the slowest ramp rates realized during the D2-Mission made use both of

the technical limits of the apparatus and the time resources of a Spacelab Mission.
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Table 1: Comparison of the curve fitting in the asymptotic region of this work to other

experiments and to theoretical calculations of the critical parameters. References

of the theoretical values are: a) [18], b) [19], c) [20], d) [21], e) [22], f) [23], g)

[24], h) [25], i) [26].

System Model fitting region   αα   A-/A+ Rξξ Reference

SF6 cv  = A+/-|ττ|-αα +B 3⋅⋅10-6 < |ττ| < 1,6⋅⋅10-4 0,1105

–0,027/+0,025

1,919–0,27/+0,24 0,284

± 0,018

this work

SF6 cv  = A+/-|ττ|-αα +B 3,5⋅⋅10-5 < |ττ| < 2⋅⋅10-3 0,098 ± 0,01 1,83± 0,02 0,273 [5]

SF6 cv  = A+/-|ττ|-αα +B 5⋅⋅10-5 < |ττ| < 1,6⋅⋅10-3 0,1075 ±0,0054 1,86± 0,06 0,263 [16]

CO2 cv  = A+/-|ττ|-αα +B+/- 4⋅⋅10-5 < |ττ| < 5⋅⋅10-3 0,124 ± 0,005 1,86± 0,06 [6]

CO2 cv  = A+/-|ττ|-αα +B 4⋅⋅10-5 < |ττ| < 5⋅⋅10-3 0,105 1,90 [17]

CO2 cv  = A+/-|ττ|-αα +B 4⋅⋅10-5 < |ττ| < 4,5⋅⋅10-4 0,1084 ±0,0023 1,965± 0,03 0,259

± 0,016

[4]

3EA-

D2O

cv  = A+/-|ττ|-αα +B 7⋅⋅10-6 < |ττ| < 6,0⋅⋅10-4 0,107 ± 0,002 1,75± 0,03 0,26

± 0,03

[7]

HTS 0,112± 0,008a) 1,96b) 0,2547

± 0,007c)

see labeling

RGT

3,1

System

0,110 ± 0,005d)

0,1094±0,0009e)

1,82-2,08f)g)h) 0,2699

±0,0008b)i)

see labeling
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